

Glencore RAGLAN Mine Case Study

TUGLIQ's "Lessons Learnt" in Arctic Renewable Energy and Energy Storage

Kivalliq Energy Forum
Rankin Inlet, Siniktarvik Hotel
Tuesday December 3rd, 2019

Why We're Here

- Oil is an important resource, but burning it causes harm to our planet.
- In Canada, the Arctic is one of the world's most fragile ecosystems, and the impacts of global environmental degradation are already visible.
- Working for an energy transition here, will send an important signal within the country and to the world that our planet is our priority and the change is happening *now*.
- Clean, local resources have regional environmental and economic benefit.
- It comes down to creativity, the courage to think beyond what we already know, and consistently building the expertise needed.

TUGLIQ Energy

Our Mission:

- Replace fossil fuels with local resources
- Decrease carbon footprint
 - while increasing regional benefits

Our Values:

- Listening, learning & respecting
 - Developing with, not "for"
- Sustainability
- Innovation & performance

TUGLIQ Energy

Who we are:

- A specialist independent power producer (IPP)
- Technology agnostic
- Investors in the North and co-developers

What we do:

- Bring clean energy to off-grid remote industrials, communities and islands
- Strive for affordable, sustainable solutions
- A-Z project management
- Flexible contractual approaches (ownership and operation)

TUGLIQ Energy

What we do:

- ✓ Wind
- ✓ Solar
- ✓ Storage: Batteries; Flywheels; H2
- Bio energy & Waste to energy
- ✓ Tidal
- ✓ Transport: Battery powered vehicle; H2 powered vehicle

Integration with existing diesel
High penetration system
Maximum diesel substitution: 93% to date

Where?

Canada: Nunavut, Nunavik, Saskatchewan

International: Mali, Caribbean

Results Highlights (RAGLAN I&II)

- Over 13M litres of diesel avoided since 2014
- 4.4 M litres of annual diesel reduction with 2 wind turbines
- 13 400 tons GHG avoidance per year, for 20 years
- Successful testing ground for technology adaptation to Arctic conditions
- A solution that can continue to grow:
 EV transport, non-fossil fuel heating, etc.
- A model for future Arctic projects
 - Innovation & problem solving in Arctic construction
 - Cost optimization problem solving (remote logistics, material efficiency)

Arctic Experience

- RAGLAN I&II One of only two industrial sites in the Canadian Arctic
- Wind resource assessments and ESIA (Environmental and Social Impact Assessment)
 completed in 6 locations: Nunavik and Nunavut, including Raglan, Iqaluit, Inuvik, Sachs
 Harbour, TMAC Hope Bay (near Cambridge Bay)
- Innovation & problem solving in Arctic construction (ex. permafrost factors)
- Cost optimization & problem solving

 (ex. reducing concrete by 90%, a very expensive material in remote locations)
- Maximizing the resource potential & choosing the best fit technology (Arctic suited wind turbine)

Community Case Studies

Community Case Study 1: Shauvanon, Saskatchewan

Opportunity:

- SaskPower Generation Partner Program Solar
- Self-generate solar power and sell to SaskPower
- Income activity for commuity-owned land

Ownership structure:

- 80% Community of Shaunavon
- 20% TUGLIQ

Community Case Study 2: Kuujjuarapik / Whapmagoostui

- Nimschu-Iskudow Renewable Energy Project
- TUGLIQ contracted for Operations and Maintenance 20-year
- Will train 10 candidate technicians per year for 2 years 2021-2023
 - 5 Inuits
 - 5 Crees
- Onsite classroom, no expatriation
- Hands-on collaboration
- Transferred from TUGLIQ to Ikayu

Community Case Study 3: Iqaluit

• TUGLIQ hired to conduct Wind Resource Assessment, Business Case, Bankable reports

Iqaluit Wind Resource Map Used For Positioning The Meteorological Tower

Preliminary Layout With Access Road

26th, 2017 4 2017 © TUGL

2017 © TUGLIQ Énergie & Cie., S.A.R.F. – all <u>rights reserved</u>

Energy Yield & Diesel Savings

Parameter		Information		
Wind Turbine Scenario	1	2	3	4
Wind Turbine Generator (WTG) Model	E-126	E-103	E-101	E-92
Rated Power (MW)	4.2	2.35	3.5	2.35
Number of Wind Turbines	1	2	1	2
Wind Farm Capacity (MW)	4.2	4.7	3.5	4.7
Rotor Diameter (m)	127	103	101	92
Hub Height (m)	99	98	74	85
Wake Loss (%)		1.6	***	0.7
Energy Production Before Additional Losses (GWh/year) (*)	12.6	14.9	8.3	13.7
Capacity Factor Before Additional Losses (%) (*)	34.3	36.1	27.2	33.1
Additional Losses % (**)	16.9			
Energy penetration in the network % (***)	10			
Net Energy Production (P50) (GWh/year)	9.42	11.23	6.21	10.25
Net Capacity Factor (%)	25.7	27	20.3	24.8
Diesel Saving (liters/year)	2,459,543	2,908,508	1,620,175	2,674,266

(*) Includes wake loss; (**) Additional losses (typical values for the blade soiling, icing, auxiliary power, etc.);

ny 26th, 2017 5 Confidential, <u>restricted</u> distribution
2017 © TUGLIQ Énergie & Cie., S.A.R.F. − all <u>rights reserves</u>

May 26th, 2017

Confidential, restricted distribution 2017 © TUGLIQ Énergie & Cie., S.A.R.F. – all rights reserved.

May 26th, 2017

Confidential, <u>restricted</u> distribution 2017 © TUGLIQ Énergie & Cie., S.A.R.F. – all <u>rights reserved</u>

2019-12-03 - Kivalliq Energy Forum, Rankin Inlet, NU

Iqaluit Wind Measurement Mast (60m)

Community Case Study 4: Salluit

Going one step further:

Waste to Energy

Micro Auto Gasification System (MAGS)

- 60% of waste could be used to produce thermal energy
- Micro gasification system can provide heat for an arena or several household
- Gasification ash can be used as fertiliser

Characteristics	One MAGS
Annual waste treatment	127 Tons per year
Energy recovery	504 MWh/ <u>yr</u>
Diesel reduction	139 503 L/ <u>yr</u>

Community Case Study 4: Salluit

Summer 2019 – Point of discussions

- Site selection for wind turbines according to Salluit residents point of view
 - Visual impact
 - Noise and flickering effect
- Construction
 - Equipment and materials availability
 - Maritime and land logistics constraints
- Local labour
 - During construction
 - Wind operation and maintenance technician
- Interest in waste to energy technology
 - Improvement to current waste treatment
 - Local heat energy production
- Local point of contact for project development

Salluit Wind turbine site selection

Major constraints*

Environmental

- 7 km from airports
- 500 m residences
- 30 m from riverbanks

Performance

- On the heights (windy area)
- Close to electrical transmission line

Economical

- Easy access for large parts transportation
- Stable ground

^{*}Non exhaustive list

Community Case Study 4: Salluit

Project Timeline

Salluit Wind Project Steps

Keys to Success: Flexible Collaboration & Proven Experience

- TUGLIQ collaborates in ways that suit communities' needs and interests.
- TUGLIQ would at the very least, like to provide a project management role because we believe our Arctic experience is mission critical.

Discussion

Thank you

Nakurmiik

Important Takeaways

- Potential
 - Natural resources
 - Experience
- Opportunity
 - Clean Energy
 - Regional Development
 - Youth Training
- Cooperation
 - Building with
 - Knowledge and skill sharing

Renewable Energy in the North: A Success Case to Build From

· RAGLAN I:

- Introducing wind power and energy storage to a 100% diesel power grid;
- Micro grid controller designed to smoothly integrate renewable power;
- Technological success, with long term fuel cost savings to the mine and reduced carbon footprint
- RAGLAN II: a "repeat order"
 - Cost improvements (reduced LCOE);
 - Improved micro grid controller capabilities;
 - · Building on lessons learned

Benefits

- Arctic: Excellent wind resource with an air density "bonus"
- Different combinations of resources and technologies are possible
- The RAGLAN projects can be scaled down and modeled to meet community energy needs
- Multiple Community Projects = Multiple Benefits:
 - Cost savings
 - Constant improvements
 - Knowledge-sharing, local employment creation, positioning Inuit youth for the industries of the future

